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Abstract
A direct approach is applied to the periodic amplification of a soliton in an
optical fibre link with loss. In a single soliton case, the adiabatic solution
and first-order correction are given for the system. The apparent advantage of
this direct approach is that it not only presents the slow evolution of soliton
parameters, but also the perturbation-induced radiation, and can be easily used
to investigate the system of dispersion management with periodically varying
dispersion and other fields.

PACS numbers: 05.45.Yv, 42.81.Dp, 42.65.Tg

1. Introduction

The physical situations that give rise to the standard soliton equations tend to be highly
idealized. In more practical systems, to the governing equations have to be added some
small terms that are called perturbation. Thus perturbation theory is important to treat these
nearly integrable systems [1]. Several soliton perturbation theories have been developed to
study the influences of small perturbations on integrable equations. In these theories, one
of the most systematic perturbation methods in dealing with these problems is based on the
inverse scattering transform (IST) which has been well studied [1–4]. Another way to study
perturbation is the direct method based upon the theory of linear partial differential equations,
and many authors have applied it to various fields [5–8]. In general, the results of these
two perturbation theories, based on IST and the direct method, respectively, are consistent.
Recently, the direct approach based on a complete set of the squared Jost functions has been
proposed and further developed [9–13]. As emphasized by them, the direct method, in general,
needs no knowledge of IST, however, results of IST are helpful in finding the complete set of
squared Jost functions.
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For the periodic amplification of a soliton in an optical fibre link with loss, several methods,
such as Lie transformation and the averaging method, have been well adopted by many authors
[14–19]. But these papers did not present the explicit expression for the rapidly varying portion
of perturbation-induced radiation of the system caused by the periodic amplification. In this
paper, we investigate this problem by using the direct method [9, 12, 13], and give the
adiabatic solution (slowly varying portion) and first-order correction (rapidly varying portion)
for the single soliton case. This method can easily be used to treat the system of dispersion
management with periodically varying dispersion [20] and other fields.

This paper is organized as follows. In section 2, the model is reduced as a perturbed
nonlinear equation with a small perturbation term. In section 3, the perturbed nonlinear
equations are linearized by expanding their solution into the sum of the adiabatic solution
and correction terms and at the same time derivative expansion for the space variable is
always needed to eliminate the potential secular terms. The key is to find eigenfunctions of
a linear operator associated with the linearized equation, namely, the so-called squared Jost
functions, and show that those eigenfunctions form an orthogonal complete set. In section 4,
the first-order corrections are expanded in terms of the squared Jost functions and the secularity
conditions are presented. Then the adiabatic variation of the parameters is determined by the
secularity conditions in section 5. In section 6, the first-order correction is given. Conclusions
are summarized in section 7.

2. Reduction of equation

The periodic amplification of a soliton in an optical fibre link with loss can be described by
adding a gain term to the usual nonlinear Schrödinger (NLS) equation [14]

i
∂u

∂Z
+

1

2

∂2u

∂T 2
+ |u|2u = r1[u] (1)

where

r1[u] = −i
1

2
�u + i(

√
G − 1)

NA∑
m=1

δ(Z − mZA)u. (2)

NA is the total number of amplifiers, ZA = zA/z0 is the period normalized to the dispersion
distance z0 (zA is the practical period of the amplifiers in the link), � = γ z0 is the normalized
loss rate and γ (=ω1 Im{χ1}/c) is the loss rate per unit length of the fibre and G = e�ZA is
the amplifier gain needed to compensate for the fibre loss. The Dirac δ-function δ(Z − mZA)

accounts for the lumped nature of the amplification at location Z = mZA. The factor
√

G − 1
represents the change in soliton amplitude during amplification.

Because of rapid variation in soliton energy introduced by the lumped-amplification
scheme, it is useful to make the transformation

u(Z, T ) = β(Z)v(Z, T ) (3)

where β(Z) indicates the part of rapid variation and v(Z, T ) is a slowly varying function of Z.

By substituting (3) into equation (1), the slowly varying function v(Z, T ) is found to satisfy

i
∂v

∂Z
+

1

2

∂2v

∂T 2
+ β2(Z)|v|2v = 0 (4)

where the rapid part β(Z) is obtained by solving

∂β

∂Z
= −1

2
�β + (

√
G − 1)

NA∑
m=1

δ(Z − mZA)β. (5)



Direct method for the periodic amplification of a soliton in an optical fibre link with loss 819

We can easily find that the β(Z) is of the expression from equation (5)

β(Z) = β(0)

NA−1∑
m=0

e− 1
2 �(Z−mZA)(H(Z − mZA) − H(Z − (m + 1)ZA))

+ β(0) e− 1
2 �(Z−NAZA)H(Z − NAZA) (6)

and is the periodic function with the period ZA, where H(Z) is the Heaviside function, that
is, H(Z) = 0 as Z � 0; while H(Z) = 1 as Z > 0.

The concept of an average soliton makes use of the fact that β2(Z) in equation (4) varies
rapidly with a small period ZA � 1. Since an optical soliton changes only a little in a short
distance ZA, one can replace β2(Z) by its average value over one period 〈β2(Z)〉,

〈β2(Z)〉 = 1

ZA

∫ ZA

0
dZ β2(0) e−�Z = β2(0)

G − 1

G ln G
. (7)

Assuming that the input peak power of the average soliton can be chosen such that 〈β2(Z)〉 = 1,

thus equation (7) leads to

β2(0) = G ln G

G − 1
(8)

and one finds that equation (4) becomes

i
∂v

∂Z
+

1

2

∂2v

∂T 2
+ |v|2v = r[v] (9)

where

r[v] = (1 − β2(Z))|v|2v (10)

and when ZA is small,

1 − β2(Z) = 1 − G ln G

G − 1
e−�Z as 0 < Z < ZA (11)

is also a small quantity. Thus we transform NLS equation (1) into a perturbed NLS equation
with the small perturbation term r[v] given by equation (10).

3. Linearization of the NLS equation

We now turn to the perturbed NLS equation (9) by the direct perturbation method. In treating
equation (9) by the direct perturbation method, we first introduce a parameter ε to characterize
the perturbation term and replace the term r[v] by εr[v]. Thus equation (9) can be rewritten as

i
∂v

∂Z
+

1

2

∂2v

∂T 2
+ |v|2v = εr[v] (12)

where r[v] is given by (10), which is a small quantity as ZA is small. When ε = 0, equation (12)
is the standard NLS equation and under the vanishing boundary condition the bright soliton
solutions can be found by a standard procedure of the IST [4]. The corresponding bright
one-soliton solution is of the form

v1(Z, T ) = 2ν sech θ e−iϕ (13)

where

θ = 2ν(T + 2µZ − τ0) (14)
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ϕ = 2µT + 2(µ2 − ν2)Z + ϕ0 (15)

where ν > 0, µ, τ0 and ϕ0 are the constants.
Now let us consider an approximation solution of equation (12) up to the first-order

correction

v = w + εq (16)

with the initial condition

v(Z = 0, T ) = v1(Z = 0, T ). (17)

According to the idea of adiabatic solutions, the zeroth-order approximation w is the so-called
adiabatic solution which has the same form as the exact solution v1 with the parameters µ, ν, τ0

and ϕ0 modulating on the Z1 = εZ scale [9, 13] and q represents the remaining term which is
called the first-order correction. Introducing a two-scale expansion ∂Z = ∂Z0 + ε∂Z1 in which
Zn = εnZ, n = 0, 1 are treated as two independent variables as usual, and substituting these
into the perturbed NLS equation (12) and equating the coefficients of each power of ε, we
obtain the following approximation equations:

i
∂w

∂Z
+

1

2

∂2w

∂T 2
+ |w|2w = 0 (18)

i
∂q

∂Z
+

1

2

∂2q

∂T 2
+ 2|w|2q + w2q = R[w] (19)

where R[w] ≡ r[w] − i ∂w
∂Z1

is the effective source with the expression, in the case of a single
soliton

R[w] = (1 − β2(Z))8ν3 sech3 θ e−iϕ − (i2ν ′ − i2νθ ′ tanh θ + 2νϕ′) sech θ e−iϕ (20)

and

θ ′ = 2ν ′(T + 2µZ − τ0) + 2ν(2µ′Z − τ ′
0) (21)

ϕ′ = 2µ′T + 4(µµ′ − νν ′)Z + ϕ′
0 (22)

and we do not distinguish Z0 and Z, and ‘′’ denotes the derivative with respect to Z1. Then the
first-order approximation linearized NLS equation (19) and its complex conjugate, together
with the initial condition q(Z = 0, T ) = 0, can be reduced into the following form:

(i∂Z − L(w))Q = R (23)

where the operator i∂Z − L(w) is the so-called linearized operator

L(w) =
(

− 1
2∂T T − 2|w|2 −w2

w2 1
2∂T T + 2|w|2

)
(24)

and

Q =
(

q

q

)
R =

(
R[w]

−R[w]

)
. (25)

In a single soliton case, (24) reduces to

L(w) =
(

− 1
2∂T T − 8ν2 sech2 θ −4ν2 sech2 θ e−i2ϕ

4ν2 sech2 θ ei2ϕ 1
2∂T T + 8ν2 sech2 θ

)
(26)

and R is determined by (20).
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For the linearized operator i∂Z − L(w), we can verify that Ψ(Z, T , λ),Ψ(Z, T , λ1),

Ψ̇(Z, T , λ1), Ψ̃(Z, T , λ), Ψ̃(T , λ1) and ˙̃Ψ(T , λ1) satisfy the eigen-equations in the following
[9] (here λ is continuous spectral which is the real number and λ1 is discrete spectral which is
the complex number λ1 = µ + iν):

(i∂Z − L(w))Ψ(Z, T , λ) = 2λ2Ψ(Z, T , λ) (27)

(i∂Z − L(w))Ψ(Z, T , λ1) = 2λ2
1Ψ(Z, T , λ1) (28)

(i∂Z − L(w))Ψ̇(Z, T , λ1) = 4λ1Ψ(Z, T , λ1) + 2λ2
1Ψ̇(Z, T , λ1) (29)

(i∂Z − L(w))Ψ̃(Z, T , λ) = −2λ2Ψ̃(Z, T , λ) (30)

(i∂Z − L(w))Ψ̃(Z, T , λ1) = −2λ2
1Ψ̃(Z, T , λ1) (31)

(i∂Z − L(w)) ˙̃Ψ(Z, T , λ1) = −4λ1Ψ̃(Z, T , λ1) − 2λ1
2 ˙̃Ψ(Z, T , λ1) (32)

and form a complete set of the linearized operator (26), namely, the expression of unity

δ(T − T ′) = − 1

π

∫ +∞

−∞
dλ

{
(λ − λ1)

2

(λ − λ1)2
Ψ(Z, T , λ)ΨA(Z, T ′, λ)

− (λ − λ1)
2

(λ − λ1)2
Ψ̃(Z, T , λ)Ψ̃

A
(Z, T ′, λ)

}
− 8νΨ(Z, T , λ1)ΨA(Z, T ′, λ1)

− i8ν2Ψ̇(Z, T , λ1)ΨA(Z, T ′, λ1) − i8ν2Ψ(Z, T , λ1)Ψ̇
A
(Z, T ′, λ1)

+ 8νΨ̃(Z, T , λ1)Ψ̃
A
(Z, T ′, λ1) − i8ν2Ψ̃(Z, T , λ1)

˙̃Ψ
A
(Z, T ′, λ1)

− i8ν2 ˙̃Ψ(Z, T , λ1)Ψ̃
A
(Z, T ′, λ1) (33)

and have all the non-zero inner products, namely orthogonal relations

〈Ψ(λ′)|Ψ(λ)〉 = −π
(λ − λ1)

2

(λ − λ1)2
δ(λ − λ′) (34)

〈Ψ̇(λ1)|Ψ(λ1)〉 = 〈Ψ(λ1)|Ψ̇(λ1)〉 = i
1

8ν2
(35)

〈Ψ̇(λ1)|Ψ̇(λ1)〉 = − 1

8ν3
(36)

〈Ψ̃(λ′)|Ψ̃(λ)〉 = π
(λ − λ1)

2

(λ − λ1)2
δ(λ − λ′) (37)

〈 ˙̃Ψ(λ1)|Ψ̃(λ1)〉 = 〈Ψ̃(λ1)| ˙̃Ψ(λ1)〉 = i
1

8ν2
(38)

〈 ˙̃Ψ(λ1)| ˙̃Ψ(λ1)〉 = 1

8ν3
(39)

where Ψ(Z, T , λ), Ψ̃(Z, T , λ) are called the squared Jost functions associated with the
Jost functions [9], and Ψ(Z, T , λ),Ψ(Z, T , λ1), Ψ̇(Z, T , λ1), Ψ̃(Z, T , λ), Ψ̃(Z, T , λ1) and
˙̃Ψ(Z, T , λ1) are of the following expressions [4], respectively:

Ψ(Z, T , λ) =
( − ν2

(λ−µ+iν)2 sech2 θ e−2iϕ e2iλT

− 1
(λ−µ+iν)2 (λ − µ + iν tanh θ)2 e2iλT

)
(40)
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Ψ(Z, T , λ1) =
(

1
4 sech2 θ e−2iϕ e2iλ1T

− 1
4 (1 + tanh θ)2 e2iλ1T

)
(41)

Ψ̇(Z, T , λ1) =
(

i 1
4

(
1
ν

+ 2T
)

sech2 θ e−2iϕ e2iλ1T

−i 1
4

(
1
ν

+ 2T
)
(1 + tanh θ)2 e2iλ1T + i 1

2ν
(1 + tanh θ) e2iλ1T

)
(42)

Ψ̃(Z, T , λ) =
( 1

(λ−µ−iν)2 (λ − µ − iν tanh θ)2 e−2iλT

ν2

(λ−µ−iν)2 sech2 θ e2iϕ e−2iλT

)
(43)

Ψ̃(Z, T , λ1) =
(

1
4 (1 + tanh θ)2 e−2iλ1T

− 1
4 sech2 θ e2iϕ e−2iλ1T

)
(44)

˙̃Ψ(Z, T , λ1) =
(

−i 1
4

(
1
ν

+ 2T
)
(1 + tanh θ)2 e−2iλ1T + i

2ν
(1 + tanh θ) e−2iλ1T

i 1
4

(
1
ν

+ 2T
)

sech2 θ e2iϕ e−2iλ1T

)
(45)

and here we have used notation

Ψ̇(Z, T , λ1) = dΨ(Z, T , λ)

dλ

∣∣∣
λ=λ1

(46)

and the corresponding inner product

〈Ψ(λ′)|Ψ(λ)〉 =
∫ +∞

−∞
dT ΨA(Z, T , λ′)Ψ(Z, T , λ) (47)

where the adjoint function related to ΨA(Z, T , λ) and Ψ̃
A
(Z, T , λ) are given by

ΨA(Z, T , λ) =
(
− ν2

(λ−µ+iν)2 sech2 θ e2iϕ e−2iλT , 1
(λ−µ+iν)2 (λ − µ − iν tanh θ)2 e−2iλT

)
(48)

Ψ̃
A
(Z, T , λ) =

(
1

(λ−µ−iν)2 (λ − µ + iν tanh θ)2 ei2λT , − ν2

(λ−µ−iν)2 sech2 θ e−i2ϕ ei2λT
)

. (49)

4. Expansion in terms of the squared Jost functions

From the expression of unity (33), we can express the first-order approximation solution
Q(Z, T ) as

Q(Z, T ) = 1

π

∫ +∞

−∞
dλ{f (Z, λ)Ψ(Z, T , λ) + f̃ (Z, λ)Ψ̃(Z, T , λ)} + f1(Z)Ψ(Z, T , λ1)

+ g1(Z)Ψ̇(Z, T , λ1) + f̃ 1(Z)Ψ̃(Z, T , λ1) + g̃1(Z) ˙̃Ψ(Z, T , λ1) (50)

provided that Q(Z, T ) is continuous with respect to T , and f (Z, λ), f̃ (Z, λ), f1(Z), f̃ 1(Z),

g1(Z) and g̃1(Z) with the relations

f̃ (Z, λ) = −f (Z, λ) f̃ 1(Z) = −f1(Z) g̃1(Z) = −g1(Z) (51)

which are determined later. Acting the operator (i∂Z − L(w)) on both sides of equation (50),
one can find the following form with the aid of equations (27)–(32) and using equation (23)

R = 1

π

∫ +∞

−∞
dλ{(ifZ + 2λ2f )Ψ(Z, T , λ) + (if̃ Z − 2λ2f̃ )Ψ̃(Z, T , λ)}

+
(
if1,Z + 2λ2

1f1 + 4λ1g1
)
Ψ(Z, T , λ1) +

(
ig1,Z + 2λ2

1g1
)
Ψ̇(Z, T , λ1)

+
(
if̃ 1,Z − 2λ2

1f̃ 1 − 4λ1g̃1
)
Ψ̃(Z, T , λ1) +

(
ig̃1,Z − 2λ2

1g̃1
) ˙̃Ψ(Z, T , λ1).

(52)
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Multiplying equation (52) by ΨA(Z, T , λ1), Ψ̇
A
(Z, T , λ1) and ΨA(Z, T , λ) successively, and

integrating over T , we obtain the following ordinary differential equations with the aid of the
orthogonal relations (34)–(39):(

ig1,Z + 2λ2
1g1

)
i

1

8ν2
= 〈Ψ(λ1)|R〉 (53)

(
if1,Z + 2λ2

1f1 + 4λ1g1
)

i
1

8ν2
− (

ig1,Z + 2λ2
1g1

) 1

8ν3
= 〈Ψ̇(λ1)|R〉 (54)

−(ifZ + 2λ2f )
(λ − λ1)

2

(λ − λ1)2
= 〈Ψ(λ)|R〉. (55)

Similarly, multiplying equation (52) by Ψ̃
A
(Z, T , λ1),

˙̃Ψ
A
(Z, T , λ1) and Ψ̃

A
(Z, T , λ)

successively, and integrating over T , we obtain the following ordinary differential equations(
ig̃1,Z − 2λ2

1g̃1
)

i
1

8ν2
= 〈Ψ̃(λ1)|R〉 (56)

(
if̃ 1,Z − 2λ2

1f̃ 1 − 4λ1g̃1
)

i
1

8ν2
+

(
ig̃1,Z − 2λ2

1g̃1
) 1

8ν3
= 〈 ˙̃Ψ(λ1)|R〉 (57)

(if̃ Z − 2λ2f̃ )
(λ − λ1)

2

(λ − λ1)2
= 〈Ψ̃(λ)|R〉. (58)

For ordinary differential equations (53), (54), (56) and (57), although the initial values
of g1, f1, g̃1 and f̃ 1 vanish, their values may go to infinity if the right-hand sides of
equations (53), (54), (56) and (57) are non-vanishing. So we must demand the right-hand
sides of these equations be vanishing, namely, requiring secularity conditions

〈Ψ(λ1)|R〉 = 0 (59)

〈Ψ̇(λ1)|R〉 = 0 (60)

〈Ψ̃(λ1)|R〉 = 0 (61)

〈 ˙̃Ψ(λ1)|R〉 = 0 (62)

which ensure g1, f1, g̃1 and f̃ 1 are finite, where (59) and (60) are complex conjugates of (61)
and (62). By means of them, the adiabatic solution can be determined. After the adiabatic
solution is determined, the right-hand sides of (55) and (58) are known, thus f and f̃ can be
determined.

5. The adiabatic variation of the parameters

In this section, we will discuss the adiabatic variation of the parameters µ, ν, τ and κ by
making use of the secularity conditions (59) and (60). First, by (20)–(22) with the aid of (14)
and (15), we have

R[w] = (1 − β2(Z))8ν3 sech3 θ e−iϕ − (−i2ν ′θ tanh θ + A tanh θ + 2µ′θ + B) sech θ e−iϕ

(63)

where

A = −i4ν2(2µ′Z − τ ′
0) (64)

B = −8ν2ν ′Z + 4νµ′τ + 2νϕ′
0 + i2ν ′ (65)
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are independent of T. Thus from the secularity condition (59), we find by directly calculating

〈Ψ(λ1)|R〉 =
∫ +∞

−∞
ΨA(Z, T , λ1)R dT = − 1

2ν
eC(µ′ + iν ′) = 0 (66)

here we have used

−2iλ1T + iϕ = θ + C (67)

and

C = 2i(µ + iν)2Z + 2ντ0 + iϕ0 (68)

which is independent of T . Hence the secularity condition (59) yields

µ = µ0 ν = ν0 (69)

where µ0 and ν0 are constants. This means there is no adiabatic variation of the parameters ν

and µ.

We now turn to the second secularity condition (60). By calculating directly and noting
(67)–(69), we have

〈Ψ̇(λ1)|R〉 =
∫ +∞

−∞
Ψ̇A

(Z, T , λ1)R dT = 1

2ν
eC

(
i4ν2

0(1 − β2(Z)
) − iϕ′

0 − 2ν0τ
′
0

) = 0 (70)

where we used
1

ν
− 2T = −1

ν
θ + D (71)

and

D = 1

ν
+ 2(2µZ − τ0) (72)

which is independent of T . Hence the secularity condition (60) yields

τ0 = τ01 (73)

ϕ0(Z) = 4ν2
0

NA−1∑
m=0

(
(Z − mZA) − β2(0)

1

�
(1 − e−�(Z−mZA))

)
(H(Z − mZA)

− H(Z − (m + 1)ZA)) + 4ν2
0

(
(Z − NAZA)

− β2(0)
1

�
(1 − e−�(Z−NAZA))

)
H(Z − NAZA) + H(Z)ϕ01 (74)

where τ01 and ϕ01 are constants. Thus we can obtain the expression for the adiabatic solution
from (13)

w(Z, T ) = 2ν0 sech(2ν0(T + 2µ0Z − τ01)) e−i(2µ0T +2(µ2
0−ν2

0 )Z+ϕ0) (75)

where ϕ0 is given by (74). This means that the periodic amplification can cause the periodic
variation of phase in the adiabatic solution.

6. Correction in the continuous spectrum

In section 5, in order to eliminate the secularities of the first-order approximation, it is required
that the adiabatic variation of parameters satisfies (69), (73) and (74). Under these conditions,
from the ordinary differential equations (53), (54), (56) and (57) with zero-initial condition,
we can obtain

g1(Z) = g̃1(Z) = f1(Z) = f̃ 1(Z) = 0. (76)
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Thus, expression (50) becomes

Q(Z, T ) = 1

π

∫ +∞

−∞
dλ{f (Z, λ)Ψ(Z, T , λ) + f̃ (Z, λ)Ψ̃(Z, T , λ)} (77)

where f (Z, λ) and f̃ (Z, λ) with relations (51) satisfy equations (55) and (58), respectively,
namely,

−(ifZ + 2λ2f ) = (λ − λ1)
2

(λ − λ1)2
〈Ψ(λ)|R〉 (78)

and

(if̃ Z − 2λ2f̃ ) = (λ − λ1)
2

(λ − λ1)2
〈Ψ̃(λ)|R〉. (79)

In the following, we will solve equations (78) and (79). First, from (63)–(65) and using (69),
(73) and (74), we have

R[w] = 8ν3
0(1 − β2(Z))(sech3 θ − sech θ) e−iϕ. (80)

Thus we obtain

〈Ψ(λ)|R〉 =
∫ +∞

−∞
ΨA(Z, T , λ)R dT = −π

F
(λ − λ1)

2(1 − β2(Z)) eE (81)

where

E = −i2
(−2λµ0 + µ2

0 + ν2
0

)
Z + iϕ0(Z) − i2(λ − µ0)τ01 (82)

is dependent of Z, and

F = cosh π
(µ0 − λ)

2ν0
. (83)

Substituting (81) into (78), equation (78) becomes

fZ − i2λ2f = −i
π

F
(λ − λ1)

2(1 − β2(Z)) eE. (84)

Solving equation (84) by Laplace transformation and taking ϕ0(Z) ≈ ϕ01 as ZA is small, we
obtain the expression for f (Z, λ) as follows:

f (Z, λ) = �

NA−1∑
m=0

�(ZA) ei2λ2Z−i2(λ−λ1)(λ−λ1)mZAH(Z − (m + 1)ZA)

+ �

NA−1∑
m=0

�(Z − mZA) ei2λ2Z−i2(λ−λ1)(λ−λ1)mZA(H(Z − mZA)

− H(Z − (m + 1)ZA)) + ��(Z − NAZA)

× ei2λ2Z−i2(λ−λ1)(λ−λ1)NAZAH(Z − NAZA) (85)

where

�(Z) = 1 − e−i2(λ−λ1)(λ−λ1)Z

i2(λ − λ1)(λ − λ1)
− β2(0)

1 − e−(i2(λ−λ1)(λ−λ1)+�)Z

i2(λ − λ1)(λ − λ1) + �
(86)

� = −i
π

F
e−i2(λ−µ0)τ01+iϕ01(λ − λ1)

2 (87)

and used f (Z = 0, λ) = 0.



826 L Li et al

Finally, from (77) , we can present the first-order approximation solution

q(Z, T ) = − 1

π
ν2

0 sech2 θ e−2iϕI1 − 1

π
I2 +

1

π
2iν0 tanh θI3 +

1

π
ν2

0 tanh2 θI4 (88)

where

I1 =
∫ +∞

−∞
f (Z, λ)

1

(λ − λ1)2
e2iλT dλ (89)

I2 =
∫ +∞

−∞
f (Z, λ)

(λ − µ0)
2

(λ − λ1)2
e−2iλT dλ (90)

I3 =
∫ +∞

−∞
f (Z, λ)

(λ − µ0)

(λ − λ1)2
e−2iλT dλ (91)

I4 =
∫ +∞

−∞
f (Z, λ)

1

(λ − λ1)2
e−2iλT dλ (92)

where f (Z, λ) is given by (85). Substituting (85) into (89)–(92), we have

I1 = −iπ
NA−1∑
m=0

∫ +∞

−∞

1

F
G(ZA, T , λ,m) ei2λ2Z dλ × H(Z − (m + 1)ZA)

− iπ
NA−1∑
m=0

∫ +∞

−∞

1

F
G(Z − mZA, T , λ,m) ei2λ2Z dλ

× (H(Z − mZA) − H(Z − (m + 1)ZA))

− iπ
∫ +∞

−∞

1

F
G(Z − NAZA, T , λ,NA) ei2λ2Z dλ × H(Z − NAZA) (93)

I2 = iπ
NA−1∑
m=0

∫ +∞

−∞

(λ − µ0)
2

F
G(ZA, T , λ,m) e−i2λ2Z dλ × H(Z − (m + 1)ZA)

+ iπ
NA−1∑
m=0

∫ +∞

−∞

(λ − µ0)
2

F
G(Z − mZA, T , λ,m) e−i2λ2Z dλ

× (H(Z − mZA) − H(Z − (m + 1)ZA))

+ iπ
∫ +∞

−∞

(λ − µ0)
2

F
G(Z − NAZA, T , λ,NA) e−i2λ2Z dλ × H(Z − NAZA)

(94)

I3 = iπ
NA−1∑
m=0

∫ +∞

−∞

(λ − µ0)

F
G(ZA, T , λ,m) e−i2λ2Z dλ × H(Z − (m + 1)ZA)

+ iπ
NA−1∑
m=0

∫ +∞

−∞

(λ − µ0)

F
G(Z − mZA, T , λ,m) e−i2λ2Z dλ

× (H(Z − mZA) − H(Z − (m + 1)ZA))

+ iπ
∫ +∞

−∞

(λ − µ0)

F
G(Z − NAZA, T , λ,NA) e−i2λ2Z dλ × H(Z − NAZA)

(95)
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Figure 1. The behaviour of the amplitude |u(Z, T )| of the approximation solution with the
parameters: loss rate γ = 0.028 km−1, dispersion distance z0 = 404.93 km and � = 11.183,
ZA = 0.125. ν0 = 2, µ0 = τ01 = ϕ01 = 0.

and

I4 = I1 (96)

where

G(Z, T , λ,m) = exp i� − exp i�

i2(λ − λ1)(λ − λ1)
− β2(0)

exp i� − e−�Z exp i�

i2(λ − λ1)(λ − λ1) + �
(97)

and

�(T , λ,m) = 2λT − 2(λ − λ1)(λ − λ1)mZA − 2(λ − µ0)τ01 + ϕ01 (98)

�(Z, T , λ,m) = −2(λ − λ1)(λ − λ1)Z + �(T , λ,m) (99)

and F is given by (83).

7. Conclusions

In conclusion, by means of the direct method, we have presented the explicit expressions of
the approximation solution of the periodic amplification of a soliton in an optical fibre link
with loss. The approximation solution consists of two portions. One portion is the adiabatic
solution (75) which is a slowly varying portion in the transmission of the light wave and
another portion is the first-order correction term (88) which is a small and rapidly varying
portion.

In order to observe the behaviour of the approximation solution directly, we present one
typical example for the case of non-resonance [14] according to formulae (3), (75) and (88).
Parameters adopted here are: loss rate γ = 0.028 km−1, dispersion distance z0 = 404.93 km,

� = 11.183, ZA = 0.125, ν0 = 2 and µ0 = τ01 = ϕ01 = 0. The results are shown in figures 1
and 2. Figure 1 is the behaviour of the amplitude |u(Z, T )| of the approximation solution
for equation (1), which shows that its propagation is periodically stable except for the small
tail oscillation resulting from the noise of the amplifier, although we have the distance of
transmission 1000 km. The intensity of this tail oscillation can be clearly seen from figure 2
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Figure 2. The behaviour of the intensity |q(Z, T )|2 of the correction term, the parameters are the
same as in figure 1.

which is the behaviour of the intensity |q(Z, T )|2 of the correction term which shows that the
correction term is a small rapidly varying quantity. For the effect of resonance, it has been
discussed by using the Lie transformation and averaging method in [14].

Furthermore, the present direct method can be used to investigate the system of dispersion
management with periodically varying dispersion [20] and other fields.
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